Seite wählen
Research Area A - TPChange TRR 301 - Wolken
TPChange 5 Projects 5 Research Area A 5 Project A02

Project A02:
Radiative effects of convective ice clouds in the UTLS from satellite observations (SAT-ICE)

Brief Summary

Convection is an important atmospheric process since it controls the water and radiation budget in the UTLS in a decisive way through the transport of water and water vapor from the boundary layer. When the trapping of thermal radiation in ageing thinning anvil cirrus, the ice clouds originating from the convective outflow, outweighs the reflection of solar radiation, these UTLS clouds exert a warming effect at top of atmosphere. However, their net instantaneous radiative forcing strongly depends on cloud height, optical thickness and microphysical properties like ice crystal shape, size distribution and ice water content. Furthermore, ice cloud processes in the UTLS influence the water budget and the radiative properties of the UTLS. Finally, convection affects dynamics and thermodynamics and the transport of trace species from lower atmospheric levels to the upper troposphere. Despite their importance for weather and climate, convective cloud and anvil cirrus properties together with their temporal evolution from convective initiation to anvil dissipation still represent large uncertainties in climate and weather models. Especially in mid-latitudes only a few studies have tackled the temporal evolution of anvil clouds and their radiation effect. In this project we propose to use satellite observations to study the radiative effect of convective ice clouds in European mid-latitudes, in particular the interconnections between convective outflow macrophysical, microphysical and radiative properties. To this end, we plan to exploit geostationary Meteosat Second Generation (MSG) satellite observations of clouds with high temporal resolution since they allow to capture the life cycle of convection and to assess the envisaged ice cloud properties and their impact on radiation at top of atmosphere at different life stages. Airborne measurements of anvil clouds (project A01) will be used to investigate in situ anvil properties, cloud-radiation interactions and to validate MSG observations. Meteorological information will be gathered from numerical weather prediction models to interpret anvil observations. This exhaustive data set will be exploited to answer the following central research questions: How do the anvil cirrus properties – including microphysics – evolve with time throughout the life cycle? How does the radiative effect of convective clouds evolve with lifetime and what is the overall radiative effect of convective clouds over their life cycle?

Members

Prof. Dr. Christiane Voigt

Prof. Dr. Christiane Voigt

Principal Investigator

Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre

christiane.voigt[at]dlr.de

Dr. Luca Bugliaro - TPChange

Dr. Luca Bugliaro

Principal Investigator

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre

luca.bugliaro[at]dlr.de

Johanna Mayer

Johanna Mayer

Doctoral Candidate

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre

johanna.mayer[at]dlr.de

Publications

Mayer, J., F. Ewald, L. Bugliaro, and C. Voigt (2023): Cloud Top Thermodynamic Phase from Synergistic Lidar-Radar Cloud Products from Polar Orbiting Satellites: Implications for Observations from Geostationary Satellites. Remote Sensing 15 (7), doi: https://doi.org/10.3390/rs15071742.