Project A02:
Radiative effects of convective ice clouds in the UTLS from satellite observations (SAT-ICE)
Brief Summary
Convection is an important atmospheric process since it controls the water and radiation budget in the UTLS in a decisive way through the transport of water and water vapor from the boundary layer. When the trapping of thermal radiation in ageing thinning anvil cirrus, the ice clouds originating from the convective outflow, outweighs the reflection of solar radiation, these UTLS clouds exert a warming effect at top of atmosphere. However, their net instantaneous radiative forcing strongly depends on cloud height, optical thickness and microphysical properties like ice crystal shape, size distribution and ice water content. Furthermore, ice cloud processes in the UTLS influence the water budget and the radiative properties of the UTLS. Finally, convection affects dynamics and thermodynamics and the transport of trace species from lower atmospheric levels to the upper troposphere. Despite their importance for weather and climate, convective cloud and anvil cirrus properties together with their temporal evolution from convective initiation to anvil dissipation still represent large uncertainties in climate and weather models. Especially in mid-latitudes only a few studies have tackled the temporal evolution of anvil clouds and their radiation effect. In this project we propose to use satellite observations to study the radiative effect of convective ice clouds in European mid-latitudes, in particular the interconnections between convective outflow macrophysical, microphysical and radiative properties. To this end, we plan to exploit geostationary Meteosat Second Generation (MSG) satellite observations of clouds with high temporal resolution since they allow to capture the life cycle of convection and to assess the envisaged ice cloud properties and their impact on radiation at top of atmosphere at different life stages. Airborne measurements of anvil clouds (project A01) will be used to investigate in situ anvil properties, cloud-radiation interactions and to validate MSG observations. Meteorological information will be gathered from numerical weather prediction models to interpret anvil observations. This exhaustive data set will be exploited to answer the following central research questions: How do the anvil cirrus properties – including microphysics – evolve with time throughout the life cycle? How does the radiative effect of convective clouds evolve with lifetime and what is the overall radiative effect of convective clouds over their life cycle?
Members
Prof. Dr. Christiane Voigt
Principal Investigator
Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre
christiane.voigt[at]dlr.de
Dr. Luca Bugliaro
Principal Investigator
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre
luca.bugliaro[at]dlr.de
Johanna Mayer
Doctoral Candidate
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre
johanna.mayer[at]dlr.de
Publications
Mayer, J., F. Ewald, L. Bugliaro, and C. Voigt (2023): Cloud Top Thermodynamic Phase from Synergistic Lidar-Radar Cloud Products from Polar Orbiting Satellites: Implications for Observations from Geostationary Satellites. Remote Sensing 15 (7), doi: https://doi.org/10.3390/rs15071742.
Mayer, J., L. Bugliaro, B. Mayer, D. Piontek, and C. Voigt (2024a): Bayesian Cloud Top Phase Determination for Meteosat Second Generation. EGUsphere 2024, Preprint, 1–32. doi: 10.5194/egusphere-2023-2345.
Mayer, J., B. Mayer, L. Bugliaro, R. Meerkötter, and C. Voigt (2024b): Information Content of Brightness Temperature Differences of Spaceborne Imagers with respect to Cloud Phase. EGUsphere 2024, Preprint, 1–36. doi: 10.5194/egusphere-2024-540.
Wendisch, M., S. Crewell, A. Ehrlich, A. Herber, B. Kirbus, C. Lüpkes, M. Mech, S. J. Abel, E. F. Akansu, F. Ament, C. Aubry, S. Becker, S. Borrmann, H. Bozem, M. Brückner, H.-C. Clemen, S. Dahlke, G. Dekoutsidis, J. Delanoë, E. De La Torre Castro, H. Dorff, R. Dupuy, O. Eppers, F. Ewald, G. George, I. V. Gorodetskaya, S. Grawe, S. Groß, J. Hartmann, S. Henning, L. Hirsch, E. Jäkel, P. Joppe, O. Jourdan, Z. Jurányi, M. Karalis, M. Kellermann, M. Klingebiel, M. Lonardi, J. Lucke, A. Luebke, M. Maahn, N. Maherndl, M. Maturilli, B. Mayer, J. Mayer, S. Mertes, J. Michaelis, M. Michalkov, G. Mioche, M. Moser, H. Müller, R. Neggers, D. Ori, D. Paul, F. Paulus, C. Pilz, F. Pithan, M. Pöhlker, V. Pörtge, M. Ringel, N. Risse, G. C. Roberts, S. Rosenburg, J. Röttenbacher, J. Rückert, M. Schäfer, J. Schäfer, V. Schemannn, I. Schirmacher, J. Schmidt, S. Schmidt, J. Schneider, S. Schnitt, A. Schwarz, H. Siebert, H. Sodemann, T. Sperzel, G. Spreen, B. Stevens, F. Stratmann, G. Svensson, C. Tatzelt, T. Tuch, T. Vihma, C. Voigt, L. Volkmer, A. Walbröl, A. Weber, B. Wehner, B. Wetzel, M. Wirth, and T. Zinner (2024): Overview: Quasi-Lagrangian observations of Arctic air mass transformations – Introduction and initial results of the HALO–(AC)3 aircraft campaign. EGUsphere 2024, Preprint, 1–46. doi: 10.5194/egusphere-2024-783.
Wang, Z., L. Bugliaro, T. Jurkat-Witschas, R. Heller, U. Burkhardt, H. Ziereis, G. Dekoutsidis, M. Wirth, S. Groß, S. Kirschler, S. Kaufmann, and C. Voigt (2023): Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic. Atmospheric Chemistry and Physics 23 (3), 1941–1961. doi: https://doi.org/10.5194/acp-23-1941-2023.