Seite wählen
TPChange TRR 301 - The Tropopause Region in a Changing Atmosphere
TPChange 5 Publications


The following publications were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 301 – Project-ID 428312742.

Bašták Ďurán, I., M. Sakradzija, and J. Schmidli (2022): The Two-Energies Turbulence Scheme
Coupled to the Assumed PDF Method. Journal of Advances in Modeling Earth Systems 14
(5), e2021MS002922. doi:

Boljka, L. and T. Birner (2022): Potential impact of tropopause sharpness on the structure and
strength of the general circulation. npj Climate and Atmospheric Science 5, (1), 2397–3722.

Corral, A. F., Y. Choi, B. L. Collister, E. Crosbie, H. Dadashazar, J. P. DiGangi, G. S. Diskin,
M. Fenn, S. Kirschler, et al. (2022a): Dimethylamine in cloud water: a case study over the
northwest Atlantic Ocean. Environ. Sci.: Atmos. 2, (6), 1534–1550. doi:

Corral, A. F., Y. Choi, E. Crosbie, H. Dadashazar, J. P. DiGangi, G. S. Diskin, M. Fenn, D. B.
Harper, S. Kirschler, et al. (2022b): Cold Air Outbreaks Promote New Particle Formation
Off the U.S. East Coast. Geophysical Research Letters 49 (5), e2021GL096073. doi: https:

Dadashazar, H., A. F. Corral, E. Crosbie, S. Dmitrovic, S. Kirschler, K. McCauley, R. Moore,
C. Robinson, J. S. Schlosser, et al. (2022a): Organic enrichment in droplet residual particles
relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data.
Atmospheric Chemistry and Physics 22 (20), 13897–13913. doi:

Dadashazar, H., E. Crosbie, Y. Choi, A. F. Corral, J. P. DiGangi, G. S. Diskin, S. Dmitrovic, S.
Kirschler, K. McCauley, et al. (2022b): Analysis of MONARC and ACTIVATE Airborne Aerosol
Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for
Airborne In Situ Sampling. Atmosphere 13 (8), doi:

Gonzalez, M. E., A. F. Corral, E. Crosbie, H. Dadashazar, G. S. Diskin, E.-L. Edwards, S.
Kirschler, R. H. Moore, C. E. Robinson, et al. (2022): Relationships between supermicrometer
particle concentrations and cloud water sea salt and dust concentrations: analysis of MONARC
and ACTIVATE data. Environ. Sci.: Atmos. 2, (4), 738–752. doi:

Harzer, F., H. Garny, F. Ploeger, H. Bönisch, P. Hoor, and T. Birner (2023): Interannual polar
vortex-ozone co-variability. Atmospheric Chemistry and Physics Discussions 2023, 1–19. doi:

Jesswein, M., R. P. Fernandez, L. Berná, A. Saiz-Lopez, J.-U. Grooß, R. Hossaini, E. C. Apel,
R. S. Hornbrook, E. L. Atlas, et al. (2022): Global seasonal distribution of CH 2 Br 2 and CHBr 3
in the upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics 22 (22),
15049–15070. doi:

Kirschler, S., C. Voigt, B. Anderson, R. Campos Braga, G. Chen, A. F. Corral, E. Crosbie, H.
Dadashazar, R. A. Ferrare, et al. (2022): Seasonal updraft speeds change cloud droplet number
concentrations in low-level clouds over the western North Atlantic. Atmospheric Chemistry and
Physics 22 (12), 8299–8319. doi:

Li, X.-Y., H. Wang, J. Chen, S. Endo, G. George, B. Cairns, S. Chellappan, X. Zeng, S. Kirschler,
et al. (2022): Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-
Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-
Scale Forcings. Journal of the Atmospheric Sciences 79 (1), 73–100. doi:

Masur, G. T., H. Mohamad, and M. Oliver (2022): Quasi-convergence of an implementation of
optimal balance by backward-forward nudging. doi:

Ploeger, F. and H. Garny (2022): Hemispheric asymmetries in recent changes in the stratospheric
circulation. Atmospheric Chemistry and Physics 22 (8), 5559–5576. doi:

Prein, A. F., N. Ban, T. Ou, J. Tang, K. Sakaguchi, E. Collier, S. Jayanarayanan, L. Li, S.
Sobolowski, et al. (2022): Towards Ensemble-Based Kilometer-Scale Climate Simulations over
the Third Pole Region, Preprint. doi:

Reifenberg, S. F., A. Martin, M. Kohl, S. Bacer, Z. Hamryszczak, I. Tadic, L. Röder, D. J.
Crowley, H. Fischer, et al. (2022): Numerical simulation of the impact of COVID-19 lockdown
on tropospheric composition and aerosol radiative forcing in Europe. Atmospheric Chemistry
and Physics 22 (16), 10901–10917. doi:

Thoma, M., F. Bachmeier, F. L. Gottwald, M. Simon, and A. L. Vogel (2022): Mass spectrometry-
based Aerosolomics: a new approach to resolve sources, composition, and partitioning of
secondary organic aerosol. Atmospheric Measurement Techniques 15 (23), 7137–7154. doi:

Tomsche, L., A. Marsing, T. Jurkat-Witschas, J. Lucke, S. Kaufmann, K. Kaiser, J. Schneider,
M. Scheibe, H. Schlager, et al. (2022): Enhanced sulfur in the upper troposphere and lower
stratosphere in spring 2020. Atmospheric Chemistry and Physics 22 (22), 15135–15151. doi:

Tornow, F., A. S. Ackerman, A. M. Fridlind, B. Cairns, E. C. Crosbie, S. Kirschler, R. H. Moore,
D. Painemal, C. E. Robinson, et al. (2022): Dilution of Boundary Layer Cloud Condensation
Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks.
Geophysical Research Letters 49 (11), e2022GL098444. doi:

Ungeheuer, F., L. Caudillo, F. Ditas, M. Simon, D. van Pinxteren, D. Kılıç, D. Rose, S. Jacobi, A.
Kürten, et al. (2022): Nucleation of jet engine oil vapours is a large source of aviation-related
ultrafine particles. Communications Earth & Environment 3 (1), 319. doi:

Voigt, C., J. Lelieveld, H. Schlager, J. Schneider, J. Curtius, R. Meerkötter, D. Sauer, L. Bugliaro,
B. Bohn, et al. (2022): Cleaner Skies during the COVID-19 Lockdown. Bulletin of the American
Meteorological Society 103 (8), E1796–E1827. doi:

Wagenhäuser, T., M. Jesswein, T. Keber, T. Schuck, and A. Engel (2023): Mean age from obser-
vations in the lowermost stratosphere: an improved method and interhemispheric differences.
Atmospheric Chemistry and Physics 23 (7), 3887–3903. doi:

Ziereis, H., P. Hoor, J.-U. Grooß, A. Zahn, G. Stratmann, P. Stock, M. Lichtenstern, J. Krause,
V. Bense, et al. (2022): Redistribution of total reactive nitrogen in the lowermost Arctic
stratosphere during the cold winter 2015/2016. Atmospheric Chemistry and Physics 22 (5),
3631–3654. doi: