Seite wählen
Research Area A - TPChange TRR 301 - Wolken
TPChange 5 Projects 5 Research Area A 5 Project A01

Project A01:
Aerosol-Cloud inTeraction and water Vapour transport in high UPdraft regimes (ACTIV-UP)

Brief Summary

Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat, moisture and aerosols in the atmosphere. They are characterized by high updrafts with turbulent and diabatic processes where cloud formation and cloud properties differ from those formed in mid-latitude frontal systems. Particularly ice clouds evolving at the top of deep convective systems – so called anvil cirrus – exert a net heating at the top of the atmosphere. Locally, they can transport water vapor efficiently into the UTLS and the stratosphere e.g. in overshooting anvil tops. The representation of subgrid-scale convective cloud processes in models is yet a challenge and requires adequate parametrizations based on robust observations of cloud properties and water vapor transport pathways. The aerosol impact on cloud formation in convective systems has been the focus in many aerosol cloud interaction studies. However, disentangling the relative impact of the aerosol type and concentration and updraft velocities on the microphysical cloud properties over the lifetime of a convective cloud is one of the largest remaining questions in anthropogenic climate forcing and requires dedicated observations. Particularly the impact of aerosol concentration and updraft velocities as well as the impact of radiative and latent heating on ice particle number and ice mass concentrations in the anvil are important parameters to assess their climate impact.
Spaceborne observations of aerosol and cloud particle number that provide a large dataset on liquid and cirrus cloud properties have significantly advanced in the past. However observations of small scale processes that determine the life cycle of convective systems and anvil clouds need to be validated with high resolution measurements to improve retrieval methods for global observations. Here we attempt to partially fill this gap by proposing new in-situ measurements from a dedicated aircraft campaign with the DLR-Falcon 20 to detect water vapor, aerosol and cloud properties as well as updraft velocities in convective systems in the UTLS above continental Europe and the Mediterranean Sea. In-situ measurements of water vapor, the particle size distribution (PSD), as well as chemical and microphysical properties of aerosol and clouds will be performed in central and southern Europe in autumn 2021. The following research questions will be addressed: What is the aerosol concentration in the inflow region of convection above continental Europe and the Mediterranean Sea? Is there a measurable effect of pollutants on the PSD in convective systems? How do high-updraft regimes and diabatic processes change the water vapor distribution in the UT, the turbulent H2O flux into the LS and the radiation budget of the UTLS? Is the water vapor distribution near convection well represented in numerical weather prediction models? How do the cloud properties in convective cirrus differ from cirrus formed in other high updraft regimes such as WCBs? How do these processes affect the UTLS radiation budget and climate?

Members

Portrait-Platzhalter

Dr. Tina Jurkat-Witschas

Principal Investigator

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre

tina.jurkat[at]dlr.de

Prof. Dr. Christiane Voigt

Prof. Dr. Christiane Voigt

Principal Investigator

Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre

christiane.voigt[at]dlr.de

Laura Tomsche - Postdoc - TPChange DFG TRR 301

Dr. Laura Tomsche

Postdoc

Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre

laura.tomsche[at]dlr.de

Simon Kirschler - Doctorial Candidate - TPChange DFG TRR 301

(former member)

Simon Kirschler

Doctoral Candidate

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre

simon.kirschler[at]dlr.de

Publications

De La Torre Castro, E., T. Jurkat-Witschas, A. Afchine, V. Grewe, V. Hahn, S. Kirschler, M. Krämer, J. Lucke, N. Spelten, H. Wernli, M. Zöger, and C. Voigt (2023): Differences in microphysical properties of cirrus at high and mid-latitudes. Atmospheric Chemistry and Physics 23 (20), 13167–13189. doi: 10.5194/acp-23-13167-2023.

Kirschler, S., C. Voigt, B. E. Anderson, G. Chen, E. C. Crosbie, R. A. Ferrare, V. Hahn, J. W. Hair, S. Kaufmann, R. H. Moore, D. Painemal, C. E. Robinson, K. J. Sanchez, A. J. Scarino, T. J. Shingler, M. A. Shook, K. L. Thornhill, E. L. Winstead, L. D. Ziemba, and A. Sorooshian (2023): Overview and statistical analysis of boundary layer clouds and precipitation over the western North Atlantic Ocean. Atmospheric Chemistry and Physics 23 (18), 10731–10750. doi: 10.5194/acp-23-10731-20

Li, X.-Y., H. Wang, J. Chen, S. Endo, S. Kirschler, C. Voigt, E. Crosbie, L. D. Ziemba, D. Painemal, B. Cairns, J. W. Hair, A. F. Corral, C. Robinson, H. Dadashazar, A. Sorooshian, G. Chen, R. A. Ferrare, M. M. Kleb, H. Liu, R. Moore, A. J. Scarino, M. A. Shook, T. J. Shingler, K. L. Thornhill, F. Tornow, H. Xiao, and X. Zeng (2023): Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction. Journal of the Atmospheric Sciences 80 (4), 1025–1045. doi: https://doi.org/10.1175/JAS-D-21-0324.1.

Moser, M., C. Voigt, T. Jurkat-Witschas, V. Hahn, G. Mioche, O. Jourdan, R. Dupuy, C. Gourbeyre, A. Schwarzenboeck, J. Lucke, Y. Boose, M. Mech, S. Borrmann, A. Ehrlich, A. Herber, C. Lüpkes, and M. Wendisch (2023): Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer. Atmospheric Chemistry and Physics 23 (13), 7257–7280. doi: https : //doi.org/10.5194/acp-23-7257-202

Painemal, D., S. Chellappan, W. L. Smith Jr., D. Spangenberg, J. M. Park, A. Ackerman, J. Chen, E. Crosbie, R. Ferrare, J. Hair, S. Kirschler, X.-Y. Li, A. McComiskey, R. H. Moore, K. Sanchez, A. Sorooshian, F. Tornow, C. Voigt, H. Wang, E. Winstead, X. Zeng, L. Ziemba, and P. Zuidema (2023): Wintertime Synoptic Patterns of Midlatitude Boundary Layer Clouds Over the Western North Atlantic: Climatology and Insights From In Situ ACTIVATE Observations. Journal of Geophysical Research: Atmospheres 128 (11), e2022JD037725 2022JD037725, e2022JD037725. doi: https://doi.org/10.1029/2022JD037725.

Sorooshian, A., M. D. Alexandrov, A. D. Bell, R. Bennett, G. Betito, S. P. Burton, M. E. Buzanowicz, B. Cairns, E. V. Chemyakin, G. Chen, Y. Choi, B. L. Collister, A. L. Cook, A. F. Corral, E. C. Crosbie, B. van Diedenhoven, J. P. DiGangi, G. S. Diskin, S. Dmitrovic, E.-L. Edwards, M. A. Fenn, R. A. Ferrare, D. van Gilst, J. W. Hair, D. B. Harper, M. R. A. Hilario, C. A. Hostetler, N. Jester, M. Jones, S. Kirschler, M. M. Kleb, J. M. Kusterer, S. Leavor, J. W. Lee, H. Liu, K. McCauley, R. H. Moore, J. Nied, A. Notari, J. B. Nowak, D. Painemal, K. E. Phillips, C. E. Robinson, A. J. Scarino, J. S. Schlosser, S. T. Seaman, C. Seethala, T. J. Shingler, M. A. Shook, K. A. Sinclair, W. L. Smith Jr., D. A. Spangenberg, S. A. Stamnes, K. L. Thornhill, C. Voigt, H. Vömel, A. P.Wasilewski, H.Wang, E. L. Winstead, K. Zeider, X. Zeng, B. Zhang, L. D. Ziemba, and P. Zuidema (2023): Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset. Earth System Science Data 15 (8), 3419–3472. doi: https://doi.org/10.5194/essd-15-3419-2023.

Kirschler, S., C. Voigt, B. Anderson, R. Campos Braga, G. Chen, A. F. Corral, E. Crosbie, H. Dadashazar, R. A. Ferrare, V. Hahn, J. Hendricks, S. Kaufmann, R. Moore, M. L. Pöhlker, C. Robinson, A. J. Scarino, D. Schollmayer, M. A. Shook, K. L. Thornhill, E. Winstead, L. D. Ziemba, and A. Sorooshian (2022): Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic. Atmospheric Chemistry and Physics 22 (12), 8299–8319. doi: https://doi.org/10.5194/acp-22-8299-2022.

Tomsche, L., A. Marsing, T. Jurkat-Witschas, J. Lucke, S. Kaufmann, K. Kaiser, J. Schneider, M. Scheibe, H. Schlager, L. Röder, H. Fischer, F. Obersteiner, A. Zahn, M. Zöger, J. Lelieveld, and C. Voigt (2022): Enhanced sulfur in the upper troposphere and lower stratosphere in spring 2020. Atmospheric Chemistry and Physics 22 (22), 15135–15151. doi: https://doi.org/10.5194/acp-22-15135-2022.

Voigt, C., J. Lelieveld, H. Schlager, J. Schneider, J. Curtius, R. Meerkötter, D. Sauer, L. Bugliaro, B. Bohn, J. N. Crowley, T. Erbertseder, S. Groß, V. Hahn, Q. Li, M. Mertens, M. L. Pöhlker, A. Pozzer, U. Schumann, L. Tomsche, J. Williams, A. Zahn, M. Andreae, S. Borrmann, T. Bräuer, R. Dörich, A. Dörnbrack, A. Edtbauer, L. Ernle, H. Fischer, A. Giez, M. Granzin, V. Grewe, H. Harder, M. Heinritzi, B. A. Holanda, P. Jöckel, K. Kaiser, O. O. Krüger, J. Lucke, A. Marsing, A. Martin, S. Matthes, C. Pöhlker, U. Pöschl, S. Reifenberg, A. Ringsdorf, M. Scheibe, I. Tadic, M. Zauner-Wieczorek, R. Henke, and M. Rapp (2022): Cleaner Skies during the COVID-19 Lockdown. Bulletin of the American Meteorological Society 103 (8), E1796–E1827. doi: https://doi.org/10.1175/BAMS-D-21-0012.1.

Corral, A. F., Y. Choi, B. L. Collister, E. Crosbie, H. Dadashazar, J. P. DiGangi, G. S. Diskin, M. Fenn, S. Kirschler, R. H. Moore, J. B. Nowak, M. A. Shook, C. T. Stahl, T. Shingler, K. L. Thornhill, C. Voigt, L. D. Ziemba, and A. Sorooshian (2022a): Dimethylamine in cloud water: a case study over the northwest Atlantic Ocean. Environ. Sci.: Atmos. 2, (6), 1534–1550. doi: https://doi.org/10.1039/D2EA00117A.

Corral, A. F., Y. Choi, E. Crosbie, H. Dadashazar, J. P. DiGangi, G. S. Diskin, M. Fenn, D. B. Harper, S. Kirschler, H. Liu, R. H. Moore, J. B. Nowak, A. J. Scarino, S. Seaman, T. Shingler, M. A. Shook, K. L. Thornhill, C. Voigt, B. Zhang, L. D. Ziemba, and A. Sorooshian (2022b): Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast. Geophysical Research Letters 49 (5), e2021GL096073. doi: https://doi.org/10.1029/2021GL096073.

Dadashazar, H., A. F. Corral, E. Crosbie, S. Dmitrovic, S. Kirschler, K. McCauley, R. Moore, C. Robinson, J. S. Schlosser, M. Shook, K. L. Thornhill, C. Voigt, E. Winstead, L. Ziemba, and A. Sorooshian (2022a): Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data. Atmospheric Chemistry and Physics 22 (20), 13897–13913. doi: https://doi.org/10.5194/acp-22-13897-2022.

Dadashazar, H., E. Crosbie, Y. Choi, A. F. Corral, J. P. DiGangi, G. S. Diskin, S. Dmitrovic, S. Kirschler, K. McCauley, R. H. Moore, J. B. Nowak, C. E. Robinson, J. Schlosser, M. Shook, K. L. Thornhill, C. Voigt, E. L. Winstead, L. D. Ziemba, and A. Sorooshian (2022b): Analysis of MONARC and ACTIVATE Airborne Aerosol Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for Airborne In Situ Sampling. Atmosphere 13 (8), doi: https://doi.org/10.3390/atmos13081242. Download freely at: http://www.mdpi.com/2073-4433/13/8/1242

Gonzalez, M. E., A. F. Corral, E. Crosbie, H. Dadashazar, G. S. Diskin, E.-L. Edwards, S. Kirschler, R. H. Moore, C. E. Robinson, J. S. Schlosser, M. Shook, C. Stahl, K. L. Thornhill, C. Voigt, E. Winstead, L. D. Ziemba, and A. Sorooshian (2022): Relationships between supermicrometer particle concentrations and cloud water sea salt and dust concentrations: analysis of MONARC and ACTIVATE data. Environ. Sci.: Atmos. 2, (4), 738–752. doi:https://doi.org/10.1039/D2EA00049K.

Li, X.-Y., H. Wang, J. Chen, S. Endo, G. George, B. Cairns, S. Chellappan, X. Zeng, S. Kirschler, C. Voigt, A. Sorooshian, E. Crosbie, G. Chen, R. A. Ferrare, W. I. Gustafson, J. W. Hair, M. M. Kleb, H. Liu, R. Moore, D. Painemal, C. Robinson, A. J. Scarino, M. Shook, T. J. Shingler, K. L. Thornhill, F. Tornow, H. Xiao, L. D. Ziemba, and P. Zuidema (2022): Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings. Journal of the Atmospheric Sciences 79 (1), 73–100. doi: https://doi.org/10.1175/JAS-D-21-0123.1.

Reifenberg, S. F., A. Martin, M. Kohl, S. Bacer, Z. Hamryszczak, I. Tadic, L. Röder, D. J. Crowley, H. Fischer, K. Kaiser, J. Schneider, R. Dörich, J. N. Crowley, L. Tomsche, A. Marsing, C. Voigt, A. Zahn, C. Pöhlker, B. A. Holanda, O. Krüger, U. Pöschl, M. Pöhlker, P. Jöckel, M. Dorf, U. Schumann, J. Williams, B. Bohn, J. Curtius, H. Harder, H. Schlager, J. Lelieveld, and A. Pozzer (2022): Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe. Atmospheric Chemistry and Physics 22 (16), 10901–10917. doi: https://doi.org/10.5194/acp-22-10901-2022.

Tornow, F., A. S. Ackerman, A. M. Fridlind, B. Cairns, E. C. Crosbie, S. Kirschler, R. H. Moore, D. Painemal, C. E. Robinson, C. Seethala, M. A. Shook, C. Voigt, E. L. Winstead, L. D. Ziemba, P. Zuidema, and A. Sorooshian (2022): Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks. Geophysical Research Letters 49 (11), e2022GL098444. doi: https://doi.org/10.1029/2022GL098444.

Ziereis, H., P. Hoor, J.-U. Grooß, A. Zahn, G. Stratmann, P. Stock, M. Lichtenstern, J. Krause, V. Bense, A. Afchine, C. Rolf, W. Woiwode, M. Braun, J. Ungermann, A. Marsing, C. Voigt, A. Engel, B.-M. Sinnhuber, and H. Oelhaf (2022): Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the coldwinter 2015/2016. Atmospheric Chemistry and Physics 22 (5), 3631–3654. doi: https://doi.org/10.5194/acp-22-3631-2022.